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PARACHUTE INFLATION: A PROBLEM IN AEROELASTICITY

INTRODUCTION

The time-variant aeroelastic characteristics associated
with the opening of a parachute are extremely complex to model.
The complexity of the problem arises because the flow field is
dependent on the canopy shape, which is itself dependent on the
flow field. A correct model must include the coupled behavior of
the structural dynamics of the parachute system with the
aerodynamics of the surrounding flow field. A coupled model will
provide not only information about the opening characteristics of
a parachute, but also characteristics of the parachute in its
terminal velocity state including the parachute's shape, drag,
velocity, pressure distribution, and flow-field characteristics.

Previously, either the aerodynamic or the structural
dynamic behavior of the parachute opening problem was studied
independently (decoupled). A variety of decoupled models developed
and investigated at U.S. Army Natick Research, Development &
Engineering Center (Natick) have contributed directly to the
coupled model presented in this paper. These studies include
steady and unsteady computational fluid dynamic (CFD) solutions
about rigid decelerators [1,2,3]. Unsteady CFD solutions about
decelerators with a specified opening behavior have also been
investigated [4].

The logic required to couple a CFD code to a structural
dynamic code was established in stages of increasing complexity.
All models described in this report are axisymmetric models. The
early stages of the model were presented in [5,6). The present
model involves coupling a CFD code to a mass spring damper (MSD)
structural dynamic code representing a flat, circular solid-cloth
parachute such as a C-9. This model is used in an attempt to
predict the behavior of a variety of parachutes with varying
initial conditions. A half-scale C-9 canopy dropped from rest was
modeled and the computational results are compared with
experimental results. Other simulations are compared with
experimental results, including a reefed T-10 flat extended skirt
parachute and a reefed G-12 cargo parachute. This report describes
the current coupled model and presents computational results from
the model during different stages of the codes progression. Future
directions and potential enhancements are discussed.



PROGRESSION OF NUMERICAL MODEL

Computational Fluid Dynamic (CFD) Model

SALE computer proQram

The Simplified Arbitrary Lagrangian-Eulerian (SALE) code,
written at Los Alamos National Laboratories, has been adapted to
solve the Navier-Stokes equations about aerodynamic decelerator
shapes [7]. SALE uses a finite difference algorithm to solve the
time-dependent two-dimensional Navier-Stokes equations in Cartesian
or axisymmetric coordinates. Axisymmetric coordinates are used for
parachute applications. The time-dependent, axisymmetric,
incompressible Navier-Stokes equations are shown in equations (I)-
(3).

Conservation of Mass-

at x ax ay
Conservation of Momentum-

_j~U2aV _p+j~ (2)
at x ax ay ax x ax ay x

at x ax ay ay x ax -1"
Conservation of Internal Energy-

j+ 1 axP~pŽ, PD+2 au+,: aiU av+ av+ (3)
at x ax ay "x -, ay 8 ) " -(3 )

where,
D- 1 axu ÷ a._v

xax ay
and,

19=2p amSax

nyy-2puv

ay

x
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SALE defines velocities at cell vertices in the computational grid,
whereas pressures are defined at cell centers. SALE uses the
Arbitrary Lagrangian-Eulerian (ALE) algorithm, which allows use of
nonuniform computational grids which can deform with time. The
computational domain is discretized with a single L -ock grid
consisting of quadrilateral cells. The rezoning capabilities of
SALE are valuable for solving flows about decelerators in motion or
for inflation problems. The solution algorithm of SALE is broken
into three phases. The first phase of the solution is a purely
explicit computation, in which the velocity field is updated by
accounting for the effects of all forces. Pressure, viscous and
other forces are taken into account during this first phase. The
second phase of the solution is implicit and advances the pressures
and velocities in time with a Newton-Raphson iteration. This
implicit phase allows for larger timesteps, and thus greater
efficiency is possible for low speed and incompressible flows. The
updated velocity field, from the first phase of the solution, is
used as the initial guess in the Newton-Raphson iteration. The
iterative process continues until an error tolerance for the
pressure field is obtained. The second phase is bypassed for
purely explicit calculations of SALE (all problems presented
utilize explicit-implicit computations). The final phase of the
SALE solution algorithm is an advective flux calculation. This
calculation accounts for the change in individual cell properties
due to advection across cell faces. For a purely Lagrangian
computation (in which cell vertices move precisely with the fluid
motion) there is no advection across cell faces and the advective
flux calculation is skipped. However, for purely Eulerian
computations (in which the grid vertices are fixed) or for
arbitrary rezoning schemes, advection of fluid across cell faces
must be accounted for. It is this final phase of the solution
algorithm that makes SALE suited for parachute problems. The
arbitrary rezoning capability allows for special mesh update
strategies to be developed that can deform the computational mesh
about an opening canopy in time. SALE has been modified to solve
various parachute flow problems such as steady and unsteady flow
about rigid decelerators [1,2,3], unsteady flow behavior about
parachute shapes with specified opening behaviors (4], and coupled
fluid-structure interaction problems for opening parachutes [5,6].

Decelerator surface defined by interior grid points

SALE computations for rigid decelerators, for decelerators with
specified openings, and initial coupled fluid-body interaction
computations utilized a mesh in which the decelerator surface was
defined by a single row of adjacent interior grid points (see
figure 1). In order to perform computations for deforming
decelerators, a mesh update strategy is needed that deforms the
computational grid in time so that the interior "decelerator" grid
points are repositioned on the decelerator each timestep and
surrounding grid points are updated about the new shape. The

3



computational grid consists of an interior "rezone" region which
includes the decelerator grid points and an exterior region which
is rectilinear and has a less dense grid structure than the
"rezone" region (see figure 2).

1 1 1 f i l l I I l l l. . ... .

•flll•~ ~ iifJ • : :

A ~ ~ ~ ~ ~ j III ifIlI,, • :

II I fi lll

Rectangular Grid Deformed Fittedl Grid

Figure 1. Computational Grid Structure (Interior Decelerator
Surface)

An initial grid is created by first generating the interior
9rezone"~ region and then extending the exterior region algebraicly
from the outer boundary of the "rezone" region. The interior
"#rezone" region is generated by deforming an initially uniform,
rectangular grid so that appropriate cell vertices fit the desired
decelerator shape. Positions of interior grid points that are not
on the decelerator surface are determined iteratively by solving
the Laplace equation with some algebraic manipulation to minimize
distortion of the mesh. This gridding approach is demonstrated in
figure I where C is the grid vertex representing the skirt of the
"canopy and A represents the canopy apex.

To fit the time-variant canopy shape, the interior "rezone"
"region of the grid is updated each time step with the same
procedure used to create the initial grid. The exterior region is
updated to extend from the new distribution of grid points along
the outer boundary of the "rezone" region. Once all grid points
have been repositioned, the relative motion of the grid and the
corresponding fluid is determined at each grid vertex. During each
time step, boundary conditions are imposed for the four outer
boundaries of the computational grid and for the decelerator

4



Decelerator Surf ce

Inter ior "Rezone"

Region

Exterior Region

Figure 2. Interior "Rezone" Region of Computational Grid

surface. The boundary condition imposed on the decelerator surface
is governed by the canopy motion. Nodal velocities are set to the
corresponding canopy velocities to represent a noslip surface. The
lower inflow boundary is considered the undisturbed, far field and
both components of velocity are set to zero. The left boundary (or
symmetry axis) and right boundary are given free-slip conditions
which requires that there is no normal velocity component. The
upper outflow boundary requires that the normal velocities are
scaled in order to satisfy conservation of mass within the
computational domain. The boundary conditions are depicted
graphically in figure 3.

In coupled fluid-structure interaction computations, the
structural dynamic code modeling the parachute requires nodal
pressure differences as input at all vertices on the canopy
surface. Since SALE computes pressure values at cell centers,
vertex pressures are defined as the average of the surrounding four
cell pressures. Values for the surface pressures are then
extrapolated from the two neighboring vertices. This process is
done for both the inner and outer surface of the canopy. This is
shown in figure 4 where subscripts P1 and P2 are vertex pressures
and P3 is the extrapolated nodal pressure on the upper surface of
the canopy.

Point B in figure 1 is on the canopy surface at a corner in the
CFD grid and often produces an adjacent cell which is quite
distorted. The result is a pressure distribution with a slight

5



/ ; i [ i•IT III I I I I
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Figure 3. Boundary Conditions (Interior Decelerator Surface)

discontinuity at point B. For this reason, the differential
pressure value sent to the MSD model at point B is evaluated by
interpolation from a curve fitting the differential pressures at
the surrounding vertices.

The mesh updating strategy implemented in SALE that is
described above was initially coupled with a spherical membrane
representation for the parachute canopy [15]. Later, it was
coupled with an axisymmetric mass-spring-damper parachute model
[5]. Computations with these coupled fluid-structure interaction
models will be described later.

The initial mesh updating strategy is able to produce results
for parachute inflation problems; however, the gridding approach
has several limitations. First, discontinuities result from two
particular points in the computational grid, the canopy surface
node on the corner of the undef ormed grid and the point on the
skirt of the canopy (see points B and C in figure 1) . A second
limitation in the described gridding approach is a result of using
the same set of nodes to def ine the canopy shape throughout the
entire canopy inflation process. An adequate grid about the
initial canopy shape will result in a final grid that is quite
skewed. Likewise, in order to have a good grid about the final
canopy shape a skewed initial grid must be used. Very little can
be done to obtain grids that are nearly orthogonal throughout the
complete computation. The gridding strategy has another
limitation. The combination of having a rectangular grid and an

6



P1=(Pa+Pb+Pc+Pd)/4

a 1b P2=(Pc+Pd4Pe+Pf)/4

C d P3=2xP2-P1
2

e Upper Surface

Lower Surface

Figure 4. Surface Pressure Extrapolation (Interior
Decelerator Surface)

interior surface makes clustering of grid points and coordinate
control very limited. Grid spacing must be of the same order of
magnitude throughout the grid. Thus, boundary layer resolution is
impossible with the described gridding approach. Finally, SALE
uses a single-block structured grid which imposes limits on the
quality of the computational grid that can be generated for
parachute problems.

Implementation of C-Grid

In order to address some of the gridding limitations stated
above, an alternate gridding scheme has been implemented. SALE
requires that the new gridding scheme remain a single-block grid
with quadrilateral cells. An elliptic "C-Grid" mesh update
strategy was employed. Much effort has been devoted to elliptic
grid generation and some of the developed techniques and strategies
could be transferred to the axisymmetric parachute model using C-
Grids [8,9,10]. Elliptic grid techniques often result in grids
that are nearly orthogonal, smooth, and have coordinate control
options such as clustering towards specified boundaries.

A C-Grid takes a single block grid in the computational domain
and maps one of its outer boundaries around the surface of a body
in the physical domain. In the case of the current application,
the boundary wraps around the parachute cross-section (see figure
5). The two boundaries that border the surface boundary in the

7



computational domain map onto the symmetry axis above and below the
parachute surface boundary in the physical domain. The final
boundary in the computational domain corresponds to the outer
boundary in the physical domain.

PrracnUtO Surfoce

--....--- .....-- -...

(1. i 14| .. 1
...... . . . . . . . . . .. . . .. o. . ... ...

Figure 5. C-Grid Computational and Physical Domains

Elliptic grids require that the positions of all boundary
points are known. Interior points in the grid are then determined
iteratively by solving a system of elliptic equations in the form
of Poisson's equation over the domain. A general form of Poisson's
equation is shown in equations (4) and (5) below:

where P and Q are "forcing function" that result in desired grid
coordinate control. The transformation of equations (4) and (5) by
interchanging the dependent variables (x and y) with the
independent variables (ý and T) leads to equations (6) and (7).

oxc-2 xx+y•,•x,, ,=-J2 (p( x+Qx, ) (6)

8



ayt-2Pyj1 ,yy, 1 =--Ji(Pyt÷Qy1 1 ) (7)

where,

13t = X, 12 +y,12

y =x42 ÷yi2

An initial algebraic grid is defined by specifying the
decelerator surface at row 1=1 and the outer boundary at j=jmax in
the computational domain. The remaining points are equally spaced
along ý=ý, for i=1 to imax. Boundaries ý=i and ý=imax define the
axis of symmetry in the physical domain.

Interior points and axis of symmetry points are determined by
solving Poisson's equation using a Gauss-Seidel iteration. Axis of
symmetry points are treated as interior points by assuming a
"mirror" grid opposite the axis of symmetry. Forcing functions are
defined in order to force clustering of row of constant il toward
the canopy surface boundary. In order to achieve the desired
coordinate control, the following forcing functions are defined:

P=0.0 (8)

e=-Qje-C0'1"I) (9)

Sis a positive constant and the magnitude of Q, controls the
intensity of the clustering towards i1=q,. c is a constant
controlling the decay rate of clustering from il=1b. For the
special case in which there is no coordinate control and the
forcing functions P and Q are zero, Poisson's equation reduces to
LaPlace's equation. Figures 6a-6c illustrate the process of
generating a C-Grid about a parachute shape with the forcing
functions given in equations (8) and (9). Figure 6a shows the
initial algebraic grid surrounding the decelerator surface. The
algebraic grid is created by defining the grid boundaries and
distributing interior points linearly between the outer boundaries.
The algebraic grid is used for an initial guess in the generation
of the elliptic grid. Figures 6b-6c show the elliptic grid with no
forcing functions (solution to LaPlace's equation) and the elliptic
grid with specified forcing functions (QI=500, c=0.5).

The grids in figure 6c appears to be well-behaved for the shown

9



Figure 6. Generation of C-Grid

canopy shape. However, for canopies that are excessively concave
(i.e. not nearly as fully opened), the gridding in the contained
region of the canopy becomes very skewed and poorly behaved. Some
"fine-tuning" was done in order to improve the gridding inside
highly concave canopy shapes. The distribution of grid points
below the canopy and along the symmetry axis were defined to
improve the distribution of rows of constant Y near the canopy
surface (O=m). For some computations it was beneficial to
condense the distribution of outer surface grid points towards the
symmetry boundary below the canopy surface and then to cluster rows
of constant ý towards •=•max- The desired clustering is achieved
by defining the clustering parameter P as follows:

p=-p1e-d(t_.-t) (10)

P1 is a positive constant and the magnitude of P, controls the
intensity of the clustering towards . d is a constant
controlling the decay rate of clustering from -

In contrast to the initial computational gridding strategy, the
new gridding scheme uses different sets of points for defining the
canopy surface in the structural and fluid dynamics codes. Thus,
positions, velocities, and pressures along the surface must be
interpolated in order to transfer information between structural
and fluid dynamics' codes. The interpolation process will be
described in greater detail later. Also, the canopy surface must

10



be given a finite thickness with the C-Grid scheme. This canopy
surface thickness distribution is specified as constant everywhere
except near the tip (or skirt). At the tip, the canopy surface is
defined as a half circle with a diameter equal to the thickness of
the canopy away from the tip. Each timestep the canopy surface
positions, and exterior boundaries of the C-Grid are updated.
Interior grid positions are then updated by solving Poisson's
equation, with the same forcing functions used to generate the
initial grid. Each time step, boundary conditions are imposed for
the four outer boundaries of the computational grid. The condition
imposed on the decelerator surface boundary is governed by the
change in canopy nodal positions and the current timestep and
represent a noslip surface. It should be noted that the surface
nodes defining a canopy with thickness are different than the
velocity of the corresponding canopy with no thickness. The canopy
thickness imposes a rotational velocity component onto the canopy
surface. For this reason, canopy surface velocity boundary
conditions are not interpolated from the structural code values.
Instead, canopy positions are interpolated from the structural
code, the specified thickness is given to the updated canopy shape,
and velocities are determined from the changes in position and the
timestep. The outer boundary is considered the undisturbed, far
field and both components of velocity are set to zero. The two
boundaries along the symmetry axis are given free-slip conditions
which require that there is no normal velocity component.

Mass Spring Damper (MSD) Model

Introduction to MSD model

The parachute consisting of canopy, lines and payload is
modeled as a series of lumped mass points (nodes) connected by
springs and dampers as shown in figure 7. The model is similar to
the model reported in (12]. The MSD model fits into the coupled
code as a set of Fortran subroutines. The MSD subrcutines require
a pressure distribution along the meridional length of the canopy
and a time step as input. The program returns the position and
velocity of each MSD node at the requested time. The MSD model is
being developed as a separate set of subroutines so that other
parachute models could be used in its place and/or it could be
coupled with CFD codes other than SALE.

The MSD model is axisymmetric but includes some three
dimensional considerations. The current model has been used to
approximate flat circular solid cloth canopies such as a C-9. The
ability to model other canopy types such as conical, and flat
extended skirt have also been programmed and will be discussed.
Newton's second law is applied at each user-defined node to obtain
a set of coupled nonlinear differential equations. A free body
diagram of a typical interior node on the canopy surface is shown
in figure 8. The forces F1, F2, F3 and F4 applied to canopy node
i are described below.
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Figure 8. Free Body Diagram

' Fl is the force due principally to the aerodynamic differential

pressure acting across the canopy surface. The nodes are

positioned along the canopy radials and the aerodynamic forces

acting across the canopy are assumed to act at these nodes. Early

versions of the model calculated the force Fl at node i as the

product of the current pressure difference over the canopy surface

at node i and the current surface area associated with node i. The

current model converts the pressure loading to localized forces at

each node by using an approximation of the logic contained in the

CALA code theory (13]. CALA determines the force per unit length

applied to a radial by assuming a shape for the horizontal members.

The horizontal members are infinitesimal strips of the gore

connecting two radials. The CALA model assumes that the horizontal

members take on a circular shape. The MSD model assumes that the

pressure distribution across a horizontal section of the gore is

constant for each time step. The CAIA code requires a pressure

distribution as input and predicts the "steady stte canopy shape
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and stresses. The current MSD model does not include all of the
theory in CALA. The model extracts the force per unit length at a
given node based on the CALA geometric assumptions. The code then
multiplies that force per unit length with the length associated
with the given node. Special approximations are made to avoid
singularities when the gore angle approaches zero by setting a
minimum allowable gore angle. A special case is required for the
node at the apex. This nodes force is applied along the axis of
symmetry and is equal to the current pressure difference at the
apex node multiplied with the current surface area associated with
the apex node. It should be noted that the direction of F1 does
not accurately represent the direction of the net force that the
CALA logic calculates.

The force F1 also includes a user defined variable viscous
normal damping contribution. This damping is applied to the nodes
based on the relative normal velocity of each canopy node to the
payload velocity. The normal damping is included primarily to
maintain numerical stability of the overall solution. The dampers
are not attempting to model any physically observable phenomenon.
The value used for the normal damping constant can have a major
impact on the solution.

* F2 is the sum of the forces from the meridional spring and damper
connecting nodes i and i+1. The spring force is the product of the
spring constant and the change in length between nodes i and i+1.
The spring force only acts when the distance between the nodes is
greater than the constructed distance. The damping force opposes
the relative velocity between nodes i and i+1. The force is the
product of the damping constant and the relative change in velocity
between nodes i and i+1. These dampers are included to damp out
the high natural frequencies in the meridional springs. These
natural frequencies may cause flow instabilities in connection with
the "no-slip" boundary conditions at the canopy surface. There is
also a force contribution from the CALA logic in the F2 direction.
This force and the CALA logic will be described in more detail
later on in this report.
e F3 is the sum of the forces from the meridional spring and damper
connecting nodes i and i-1. Similar to F2.
* F4 is the force due to gravity on node i. This force is the
product of the gravitational acceleration constant and the mass of
node i. The coupled model is solving the dimensional form of the
governing equations. The coupled model could be used for similar
simulations in other atmospheres with other gravitational fields.

The angles shown in figure 8 are described briefly below.
There numerical approximations will be given later on in this
report.
• a is the angle from the y axis to the outward normal direction
associated with node i.
* A, is the angle from the local x axis of node i to the line
segment connecting nodes i and i+1.
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MSD equations of motion

The equations of motion for the parachute are defined in this
section. The canopy is modeled with a user defined number of nodes
n. These nodes are defined along the radial with node 1
representing the apex and node n representing the skirt. The lines
are also modeled with a user defined number of nodes n1. Line node
# 1 is connected to the skirt and line node # nl is connected to
the payload. The payload is defined by one node. The total number
of nodes is equal to (n+nl+l). The equations of motion for all
canopy and line nodes have two degrees of freedom and are defined
in the global X-Y coordinate system. The payload only has one
degree of freedom in the global Y direction. Therefore the MSD
model of the parachute is solving (2n+2nl+l) second order nonlinear
ordinary differential equations (ODE's).

The equations of motion for all nodes are described in this
section. The numerical implementation of various terms and the
method used to determine the solution of these equations will be
described in later sections. The interior canopy nodes are defined
first. These include canopy nodes 2 through n-1. The acceleration
in the x direction of canopy node i is given in equation (11).

d~x(i) = 1 (CALAX~kmnAlcosP1 -km,_AAli.cospi-l-
dt 2  mi

+Cmicd(Al)d cIspi-Cmin4  dt. cosI-31 -CnM[

dx(i)sina,+( dy(i) _ dy(payload) )cosct]sina,)
[Zt- dt

The acceleration in the y direction of canopy node i is given in
equation (12).

d 2y(i).. 1 (CALAY-kmAlsin i+kmi-1 Al,-sinpi1 -
dt 2  mi

d(Ali) sin-÷Cm,_• d(Ait') sinp1 1 -Cn1 [ (12)Cm-1  si-- dt

dx(i) s dy(i) _ dy(payload) )cosaJcosa).g
at- dt cs s
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Next, equations for a typical interior line node is given.
These include line nodes # 2 through # n1-1. The acceleration in
the x direction of line node i is given in equation (13).

d 2xi. 1dWxi) = (kmlA 1cosP,-km_1 A11 1 cosf, 1 _dt' mi (13)

Cm d(All) cos (-Cm (A1 . 1)cosp1 -DX )
" dt s i-C iI- -t -- D I

The acceleration in the y direction of line node i is given in
equation (14).

d tY(i) _ 1 (-km Al sin•+km,_•Al,_•sinp _-,
dt2  m il(14)

CmI d(Al) sin, 1+Cm.il d(Ai,±)- sinp,-.-DY1 ) -g

Next, equations of motion for special nodes are given.
These nodes are node # 1 on the canopy, node # n on the canopy,
node # 1 on the line, node # n1 on the line and the payload node.
The acceleration in the y direction of canopy node # 1 is given in
equation (15).

d 2y(1) - 1 (Fl -kmiAl(sinA1_Cm 1' d ) .....
dti -mi ( 15)

_ dy(l) _ dy(payload) -
dt dg

The acceleration of node # 1 on the canopy in the x direction is
defined as zero due to symmetry if the node lies on the axis of
symmetry (no vent). The acceleration in the y direction of the
payload is defined next in equation (16). Note that the equation
is for finite mass openings. The infinite mass opening payload
equation will be described in a later section. The last node on
the canopy is connected to the first line node with a line spring
and a line damper. The last line node is connected to the payload
with a line spring and a line damper. The equations for these
special cases are simple modifications of the equations given
above.

These equations are reformulated into a set of first order
ordinary differential equations (ODE's). The ODE's are nonlinear
in space and first order in time. The ODE's are solved over the
desired time step with initial conditions by utilizing the SLATEC
ODE solver DDEBDF and associated subroutines [11]. The subroutine

15



d 2t

d~ (pa l oa d)_- 1 le'dt' ,, m y (A1,11nesin~nI.n I in e+n.

d (A 1in*ln) s n n # -
COnline dt inJ,)-

DDEBDF uses backwards differentiation formulas of orders one
through five to integrate a system of first order ordinary
differential equations. This formulation will be described in more
detail later in this report.

CALA logic and equations

The MSD model is simply Newton's second law applied at every node
representing the parachute. This requires a conversion of the
pressure distribution along a radial that is supplied by the CFD
code to be converted into a force vector at each node. A variety of
techniques were used to accomplish this conversion.

The early MSD models assumed the canopy to be in the form of a
surface of revolution and determined the magnitude of the force
applied at each node as the product of the current surface area at
each node and the supplied pressure distribution at that node. The
force was assumed to act in the current normal direction of the
surface at each node. The surface areas were approximated as
conical sections between each node. This technique was refined by
considering the pressure distribution to be piecewise linear and
numerically integrating the product of the pressure distribution
and the surface area for each node during each time step. One of
the major problems with these models is that the models do not
incorporate any type of hoop contributions. The nodes are located
on the radials and the pressure distribution is acting across the
gore surface. The model should account for the gore shape to apply
loads to the radials even though the shape is axisymmetric in the
CFD code. This approach should also incorporate a hoop component
of force that earlier models considered only in the crudest sense.
The desire to include a more accurate hoop force led to a crude
version of the CALA theory being incorporated into the model.

The pressure distribution across the surface of the canopy is
supplied by the CFD code at the MSD nodes. This is accomplished by
normalizing the current radial arc length in both codes and using
Lagrange Polynomials to interpolate values between the CFD and MSD
canopy surface vertex and nodes. The MSD code utilizes the basic
CALA assumptions to transform the pressure distribution into nodal
forces along the radial. The MSD model nodes are located along a
radial and the mass associated with each are lumped values based on
the constructed shape of the canopy gores. The CALA code assumes
that the horizontal members form sections of circular arcs and that
the pressure distribution is uniform along the horizontals. The
horizontal members lie in planes that are defined by the current
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unit normal vectors from two adjacent radials making up one gore.
The CALA reference defines the static force per unit radial length
applied to a radial point as shown in equations (17) and (18) (Note
these are equations (11) and (12) in the CALA reference [13]).

S= -cosqsin -- sin e (2 -• - ) (17 )

dl Ndl

and,

d_ = dHz.,
dFy( sin4rcos(n/N) -cosisin7 Esine) (2--.) (18)

dl [1-sin26sin2 (n/N) ] 05dl

Note that Y, is defined as the local normal direction positive
outward. X. is defined as the local tangent direction with
positive defined as pointing towards the skirt. Also the variable
theta (0) defining the normal direction in the CALA logic is
related to the MSD variable alpha (a) by the equation a--x/2-6.
Equations (17) and (18) give the force per unit length along the
radial. The value of the horizontal force per unit length is given
by equation (19) (Note this is equation (15) in the CALA
reference).

dHz:= APysin(t/N) [!_sin20sin2 ((/N)]0.5 (19)

dl sin*-

The force per unit length equations in (17), (18), and (19) are
converted to forces by multiplying each equation at each node by
the corresponding current radial length associated with each node.
The radial length associated with each node is taken as the one
half the sum of the distances between the two nearest neighbor
nodes. The variable V is the gore bulge angle that is determined
iteratively at each node for each current surface configuration
based on the constr~icted gore shape at each time step. The
equation defining the gore bulge angle is equation (20) (Note this
is equation (14) in the CALA reference).

In this equation N is the number of gores, y is the current
distance from the node to the axis of symmetry and 1, is the
constructed length of the horizontal member at that node. This
equation is solved by Newton's method at each node and every time
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sn ysinI (20)

step. A few restrictions have been included to avoid
singularities. The horizontal members load per unit length will
blow up as the gore bulge angle approaches zero, see the
denominator in equation (19). This is expected to occur near the
apex of the canopy but could occur anywhere depending on the gore
construction. The singularity is avoided in the code by defining
a minimum allowable gore bulge angle. The force applied to each
node are the forces per unit length in equations (17) and (18)
multiplied by the current radial length associated with each node.
Note that these forces include contributions in both the normal and
tangential directions. A few extra assumptions are used in this
dynamic model to include this crude version of the CALA logic.
First, if there is no vent at the apex then the first node located
on the axis of symmetry becomes a problem because the gore bulge
angle is not defined at this node. The force at this node is taken
as the product of the current surface area and the current pressure
differential and is assumed to act along the axis of symmetry.

Another difficulty with this model is the "snap through"
possibility. This will occur when the pressure distribution
changes sign during a dynamic run. This can occur during a wake
recontact near the apex and during the early stages of opening near
the skirt. The model does not include any special logic for this
possibility other than a change in sign for equation (18).
Equation (17) is written in the code with an absolute value sign on
the differential pressure term. Note that the current code does
not attempt to include strain in the horizontal members even as the
radial stretches. The horizontal members' length is considered
fixed, based on the constructed gore geometry. This approximation
can also lead to the singularities described above.

One last modification was included to deal with the early
stages of the opening. The canopy is assumed to start with the
gore horizontal members in sections of circular arcs as described
above. There is a minimum distance from the axis of symmetry for
each node at which contact between gores will begin. The minimum
condition is based on simplified geometry considerations. The
condition for contact to begin is given in equation (21).

ywi) < Cos (IC/IN) 1 ()(21)
(/2 +n•/A sin (ic/N)



If contact exists, the code determines the distance of the contact
region by assuming that the contact length is a straight line in
the direction of the unit normal. The gore bulge radius is
considered constant for a node with contact. The constant value is
given in equation (22).

=7Z/2 +c/IN (22)

The CALA logic described above is applied with the gore bulge angle
constant and the new horizontal member length which is calculated
as the original horizontal length minus the contact length. The
forces determined are computed using the new horizontal length in
equations (17) and (18). The tangential component is not modified
due to the contact distance from the radial.

The CALA logic does take into account the gore geometry and
allow the user to model a variety of gore shapes. The logic
however has many assumptions that need to be addressed. The
assumed shape and orientation being one of the major assumptions.
Future coupled codes will have to address the first order three
dimensional effects of the canopy. Future models will be discussed
in a later section of this report.

MSD numerical approximations

This section describes the numerical approximations used in the
code to determine the angle and distance terms in the equations of
motion. The definition of Al1 is given in equation (23).

1

.li=[ (Xi11-X;i)2+(yOJ.J-yO,)2]•-i

Al. is the current change in length from node i to node i+1. The
constructed length between nodes i and i+1 is defined by 1i,. The
first derivative of Al1 with respect to time is the current change
in velocity between nodes i and i+1 and is given in equation (24).

The angular approximations are defined next and make reference
to figure 9. The angle beta determines the current relative angle
between the local x axis and the line segment connecting node i and
i+l. The equations of motion require values of sin(pi) and cos(p1 ).
The sin(p31 ) is given in equation (25).
The cos(pr) is given in equation (26).

The calculation for the angle alpha which defines the current
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(24)
zldx(i)=[ (x,.l-x,)2÷(y..,-y,)I] '7(xJ.'-xJ)

~1
zldy(i) =[ (xJ.J-xJ)2÷(yi.,-yJ)2] '2(Yi.1-Yi)

Y

Y

M.i

Yi+ . . . ..

Y i: M i+1

xI 1  xi x 1+1 X

Figure 9. Definition of Angles

sinp.- Yi-Yi.1 ((25)[ (X~ -X,) 2 + ( ÷-Yi) 2] 1/2

normal to the surface has taken on a variety of forms. The first
method used in older models is given in equation (27) and would be
accurate for equally spaced nodes. However, the spacing is not
constant, even if the initial node layout is, due to stretching in
the meridional direction.
This method was modified to adjust for unevenly spaced nodes by
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cc,= = Xi.+P.l-X226

sinoic.---Y÷ ( 27 )[_1) 2 +(x1.. -x4 ) 2 +_1) 21/2

si [I_ (xi._X ) Y.1) 2 +) 2] 1/2

utilizing Lagrange polynomials. First, a third order Lagrange
polynomial was fit through three consecutive nodes. The slope at
the middle node was calculated and its negative inverse taken as
the slope of the normal at the middle node. This method required
speciai logic at areas where the tangent curve becomes infinite
because the polynomial required to fit the points changes from a
function of x to a function of y. The switching from a function of
x to a function of y created a small discontinuity in the angle
alpha through time. The forces applied at the nodes are a function
of alpha and these small discontinuities caused local instabilities
in the canopy motion which is believed to have caused small fluid
instabilities.

The current model uses a weighted averaging technique which
utilizes the current values of sin(A) and cos(j). The values of
COS(N., and cos(j) are weighted to determine the value of cos(a1 ).
The total current length of the two sections from node i-I to i+1
is defined as L.. Where Li=l1 . 1+li. The values of sin(a,) and
cos(a.) are given in equations (28) and (29), respectively.

sin(a.,)= = sin(Pj-_•)+!-sin(PI) (28)

The surface area and meridional spring approximations will be
discussed next. Two half gores and a radial are used to model the
canopy as shown in figure 10. The number of nodes used to model
the canopy (a total of n) and the unstretched position of each node
is user defined. The mass associated with each canopy node is
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Figure 10. Layout for Two Half Gores

based on the undeformed geometry of the canopy. The undeformed
surface area for a node is multiplied by the undeformed thickness
of the canopy fabric and the density of the canopy fabric. This
quantity is added to the mass associated with the radial
contribution to that node.

The meridional springs are modeled by assuming a linear force
versus deflection curve for both the fabric and the radial. The
material associated with a meridional spring is considered as a
rectangular section as shown in figure 11. The fabric F.iing and
radial spring (optional line continuation) are considered to act in
parallel. This approximation allows for the introduction of a
Young's modulus term for both the canopy fabric and the radial.
The equation to determine a meridional spring constant is shown in
equation (30).

km,= nE2h (xO1 +Xo,. 1 ) E1A (30)

The apex and skirt nodes .on the canopy require special
treatment due to different surface area calculations.

The damping coefficient approximations will be discussed next.
The damping coefficients in the MSD model equations of motion were
usually taken as constants. The meridional damping constant Cm1 is
given in equation (31) where Cm is a user defined value used for
all meridional dampers.
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Cm, =2Cm(O .5 (m, +m,. 1) kmi) 0. (31)

The normal damping constant Cni is given in equation (32)
where Cn is a user defined value used for all normal dampers and
m is the total mass of the canopy.

Cni=Cn (mi/mToT9) (32)

The approximation used to model the normal drag contribution
to the lines will be discussed next. The suspension lines have
meridional dampers, but do not have the same type of normal damping
as the canopy. The suspension lines normal motion is damped by
incorporating a normal line drag approximation. The line drag
approximation assumes that the velocity of the air is moving at the
payload velocity and the model includes only the normal drag
component to each line node. The approach is to first determine
the current "outward" normal direction at each line node by fitting
a third order Lagrange polynomial through each interior line node.
The normal direction is defined by the angle alpha as with the
canopy normal directions. The normal velocity component is
calculated and based on each line nodes current velocity. Finally,
the normal component of line drag is applied in the opposite
direction of the current normal velocity for each line node. The
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magnitude is D=C,(½p[,] 2 )S where, C. is the drag coefficient [14]
and approximately equal to (1.4) but can be changed through an
input value. p is the density of the fluid and is assumed to be
constant. V. is the magnitude of the normal velocity at the line
node. S is the normal component of area associated with each line
node. S is computed as the product of the line diameter and the
length of the line segment. The magnitude of V, is given in
equation (33).

IVNII=I-d sin(a.) I+I-d cos(a) (33)

The x and y components of line drag at each line node is determined
and sent to the ODE solver as a constant for each time step. The
sign of the x and y components of the drag are opposite the sign of
the current x and y components of velocity respectively. The
equations for the x and y components of the normal drag are given
in equations (34) and (35).

DX1i- idx/dt sin (aj) CD ( p [ VN] 12) S (34)

DY=- idyj/dt Cos (a,) C"( 1p [V,,! 2) s (35)

Reformulation for SLATEC software

The parachute equations of motion consist of m=2n+2nl+l
ordinary differential equations (ODE's). These coupled ODE's are
second order in time. The coupled ODE's are reformulated into a
larger set of coupled ordinary differential equations which are
first order in time with a change of variables. This is
accomplished by defining new variables for the derivatives with
respect to time as shown in equation 36. This procedure has
converted the m=2n+2nl+l ODE's into M=4n+4nl+2 governing ODE's
which need to be solved for each desired time step.
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Z, =X Z3 =y

dx =dy (36)

dt~ dt

dz= dz 2 d2x
-a't= z -a d = ( 37 )

dz3  dz 4 d2y d37)

These ODE's are nonlinear in space and first order in time.
The values of n and n1 are user defined. However, changing the
values of n and n1 requires the program to be recompiled. The
variables z,, z 2 , z 3, and 24 are vectors. Each element of the vector
z1 (i=1-4) has a unique value at each node on the parachute system
at each time step. These values are the solution of the governing
system of ODE's. This resulting system of equations can be written
in an acceptable form for the SLATEC subroutine DDEBDF.f. The
subroutine DDEBDF.f uses the backwards differentiation formulas of
orders one through five to integrate a system of first order
ordinary differential equations. The equations must be written in
the format shown in equation 38. DDEBDF.f requires a separate
subroutine be written which defines the differential equations. A
set of initial conditions must also be specified.

D__Z =DE ( C, Z)
Dt

(38)
where Z T= (Z, Z21 Z3  . . .. . ZM)

i = (zz, • , Z3 (Zmj Zm.i

The solution of these dynamic equations also requires and depends
on the boundary conditions and initial conditions applied to the
parachute system. A variety of boundary conditions and initial
condition options are included in the code as user defined options.
These options will be discussed in the next section of this report.

Initial conditions

The MSD model includes a variety of initial condition options.
The initial conditions required to solve the governing PDE's are to
prescribe the initial position and velocity of every node in the
MSD model. The model is restricted to starting with an initial
shape that has a positive enclosed volume of sufficient size. This
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restriction is due to the CFD's structured grid which must maintain
a positive volume in its CFD cells for all time. Also, the MSD
model is expected to be less accurate for these shapes which are
less axisymmetric. A variety of initial shapes have been
attempted. Most runs are initiated with the payload located at the
origin of the global MSD coordinate system. The constructed
dimensions of the canopy are known, so a constructed radial
distance and a line length are known. The sum of the line length
and radial arclength defines the total unstretched arclength of the
parachute. Initial shapes were constructed by defining an angle
from the axis of symmetry to the parachute suspension line (always
assumed to be initially straight) and generating a conical base
with a spherical section top where the total arc length is given by
the constructed geometry. The angles used generally ranged from 3
to 5 degrees. Other initial shapes included a conical base and a
conical top with the two cones connecting at the skirt.

The initial velocities of all nodes must also be specified to
generate a solution. The simplest case is to set all velocities
equal to zero. This is an approximate simulation of a canopy
hanging from the apex with an initial volume defined above and no
initial strain. This was the most common set of initial conditions
used in an attempt to model ongoing experiments of free hanging
parachutes.

Different initial conditions must be employed to more
accurately model other types of real parachute openings. A variety
of impulsively started runs were made with the payload given an
initial velocity, but all other nodes and the entire fluid at rest.
Also, a linearly impulsive initial set of velocities was attempted
where the payload and apex node velocities are defined. All other
nodes are assigned velocities linearly based on their global Y
initial position of each node. These impulsive initial conditions
are a first attempt at starting the numerical simulation of the
parachute system at line stretch.

Boundary conditions

A variety of boundary conditions are included as user options
in the model. The first option is skirt reefing. This is modeled
by fixing the global X position of the skirt node. The node can be
fixed in space or attached to a "nocompression" spring that is
connected to the axis of symmetry at the same global Y coordinate
as the skirt node for all time. This spring's stiffness could be
based on the reef ing lines characteristics. The restriction on the
skirt node can be released at a user defined time, payload velocity
or payload force. The logic to incorporate a second stage of skirt
reefing would be a trivial modification in the MSD model.

A second boundary condition available in the code is all X
reefing. This option applies the same type of restrictions as
skirt reefing to all of the canopy nodes. This condition does not
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restrict any vertical motion of the nodes. The "disreefing" of the
nodes can be specified at a given time, payload speed, or payload
force. This option was used to approximate infinite mass openings
which are discussed in the next section. This type of boundary
condition allows the parachute system to obtain a vertical velocity
before opening. The model is not physical because the flow
develops around and inside the canopy and therefore a relatively
large pressure distribution is formed over the canopy surface
before "disreefing" the global X displacement restriction.

The all X reefing option does have potential for other
applications which have not been investigated at this time. For
example, to determine "steady state" shapes, pressure and velocity
fields. These runs involve starting with an initial shape that is
close to the expected fully opened shape with zero velocity for all
nodes. The run is marched out in time until the flow field is
developed around the canopy. The X reefing restriction is then
lifted to allow the canopy to move into its numerically predicted
terminal shape. These same types of runs can be done with other
initial shapes and with a large amount of damping at each node in
the normal direction of the canopy surface. The normal damping
option in the code is of a viscous type based on relative
velocities of canopy nodes to the payload velocity or the system's
center of mass. The damping parameters can be lowered in magnitude
as a function of time when the parachute is approaching its steady
state shape.

Infinite mass opening

An infinite mass opening is approximated in the model and is
included as a user option. Choosing this option sets the
gravitational constant to zero. The payload equations of motion
are predefined smooth functions in time. The functions chosen for
the acceleration and velocity of the payload are given in equations
39 and 40.

dyty= v- (l-tanh(vp(t-vt) )-(-tarh(-vspvc)) (39)
dt 2

d 44 . 1- ] 2 (40)
dt2 2- -t cosh(v,,(t-v,) )

Where v, is the time at which the inflection occurs, v. is the final

payload velocity, and v1p is a parameter used to define how fast the
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payload velocity changes from zero to v.. The velocity curves
start from rest and accelerate to a near constant velocity value of
v. at the user defined time of 2v,. This option is run with the all
X reefing option. The user defines the disreefing t`ne which
releases the X restrictions after the flow has developed at the
terminal prescribed payload velocity. The canopy opens over time
with the payload velocity remaining unchanged. This model does
allow the pressure distribution to build up around the canopy
before disreefing. It is expected that the influence and
significance of this pressure buildup before disreefing will be
minimized as the initial canopy shape becomes more tube-like with
a smaller initial maximum diameter.

MSD FORTRAN program description

The solution of the equations of motion representing the
parachute is performed numerically with a set of FORTRAN
subroutines that are called from the CFD main program. The
structural code is capable of solving the parachute problem for a
variety of user supplied input parameters. This section gives a
brief overview of the subroutines features and includes a summary
flow chart which outlines the contents of the subroutine program.

The program has a variably spaced grid capability and a user-
defined number of nodes option. The user defined number of nodes
on the canopy (n) and on the lines (nl) are defined in a
"parameter" statement in the subroutines. Therefore, the programs
must be recompiled to change these options. The programs have been
run with as few as 11 nodes and as many as 40 nodes to represent
the canopy. Line nodes have ranged from zero for older versions of
the code with no line nodes to 25 nodes. The variably spaced grid
option allows the user to define the node locations on the
unstretched canopy with unequal spacing. This option allows the
user of the coupled codes to cluster nodes in areas of interest.
The input files needed to run the coupled code are created with
preprocessing programs.

The flow chart for the MSD FORTRAN subroutine programs is
shown in figure 12. A description of each letter's role in the
flow chart for the MSD code is given below.

A. ENTER MSD CODE: The CFD code provides the MSD code with the
following information on each call. 1. The current pressure
distribution on the canopy surface at each MSD node. 2. The
current time. 3. The time at which a solution is desired (after
initiation this is the current time plus the maximum prescribed
time step). 4. Printing control parameters which tell the code
whether or not and when to print a variety of output for
postprocessing.

B. FIRST CALL ONLY: This section of the subroutine is for

initialization and is only entered on the first call to the MSD
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A ENTER MSDCODE

B FIRST CALL ONLY

I CCALLSOLVER ]

D UPDATE VALUES

'I
ERETURN TO CFD

Figure 12. Flow Chart Outline for MSD Code Subroutine

subroutines. The MSD code opens an input file and reads in the
following information.
1. Type of canopy.
2. Special information related to specific canopy, i.e. percent
extended skirt, value of conical angle, etc.
3. Youngs modulus for the canopy fabric.
4. Canopy thickness.
5. Number of gores in the canopy.
6. Mass density of the canopy fabric.
7. Gravitational constant. If zero is entered, the code initializes
an infinite mass opening and requires input of infinite mass
opening parameters.
8. Payload weight.
9. Parameter (zero or one) which defines whether or riot the lines
continue through the radials.
10. Meridional damping constant.
II. Normal damping constant.
12. Minimum gore bulge angle allowed for the CALA logic.
13. Initial velocities of the payload and vent of the parachute
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system. The initial velocity of all other nodes are linearly fit to
these values based on the global Y coordinate system.
14. The next n lines are the initial X and Y node locations which
are taken as unstretched in the meridional direction.
15. A parameter which tells the program to either start the run
from the above unstretched initial shape or to read in an initial
stretched shape from a separate file.
16. Youngs Modulus for the lines.
17. Mass density of the line material.
18. The next few entries define reefing information such as type of
reefing, duration time of reefing etc.
19. The drag coefficient for the lines which is used in the program
to determine the normal drag contribution to the line nodes.

This section of the code also determines the meridional spring
constants, damping constants, node constant mass values (based on
volume calculation times fabric mass density value), line node
location (taken as evenly spaced if unstretched option is used
otherwise they are read in), line spring values, line mass values,
line damper values, gore horizontal dimensions, unstretched lengths
for all springs, amount of initial stretch for all springs,
relative velocities between connecting nodes, and initial values of
the angles alpha and beta. This section also initializes a variety
of parameters needed to utilize the SLATEC ODE solver, opens up
output files, and writes initial condition information to these
files.

C. CALL SOLVER: This section sets up values for and calls the
SLATEC program DDEBDF.f which is linked to the correct set of
governing equations that are based on the prescribed boundary
conditions. The subroutine DDEBDF.f needs the following input,
which is automatically determined by the FORTRAN program for each
loop: 1. A subroutine name where the governing ordinary
differential equations are located (The ODE's and subroutine must
be written in a predescribed format). 2. Current deflections and
velocities at each node. 3. Current time and desired output time.
4. A variety of inputs needed by the solver; for example the number
of equations and the desired tolerances to be met. Before the call
to the solver the code determines node forces due to the current
pressure distribution based on the CALA logic previously described.
The forces due to normal line drag are also determined. After the
call to the SLATEC solver, the code updates the current spring
elongations, current angle values, current relative velocity
values, and current damping values.

D. UPDATE VALUES: This section extracts the desired output if
requested for the current time step. This includes the current
global node location, current displacements and velocities at every
node, current pressure values at each node, hoop and meridional
strain at each node and the hoop and meridional stress at each
node. This section updates the current values for the next call
and updates maximum and minimum values used for postprocessing.
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The program writes to files that are set up in a MATLAB readable
matrix format. These output files are read by the MATLAB software
for postprocessing as discussed in the next section.

E. RETURN TO CFD: Return to CFD program with current positions and
velocities of all nodes on the canopy and the position and velocity
of the payload.

Coupling

Introduction

The coupling approach used in the model is an explicit
marching method in time. The CFD code is used as the main FORTRAN
program, which calls the structural code subroutines. The coupled
model starts the computations with the flow medium and structural
components at rr~st. The CFD solver computes the pressure
distribution for the flow field at t=At, which is zero everywhere
for the first time step for these initial conditions. The pressure
distribution over the surface of the structural model and the time
step are sent to the structural code. The structural code
integrates the equations of motion over this time step at a user-
defined set of nodes.

CFD decelerator surface defined by interior grid points

For computations in which the SALE defines the decelerator
with interior grid points, the coupling approach is
straightforward, since each node in the structural representation
on the canopy coincides with a specific adjacent CFD vertex. The
positions and velocities of the canopy surface nodes are determined
by the structural model and are returned to and updated in the CFD
code. These surface vertices in the CFD code are required to move
with the motion specified by the structural code. The boundary
condition imposed by the CFD code on these vertices represents a
no-slip boundary condition. The CFD code computes the pressure
distribution for the next time step and sends the surface
differential pressure values and the time step to the structural
code. The process continues by marching forward in time up to a
specified completion time. This process is described in greater
detail in reference 5.

Implementation of C-GRID

The fluid dynamics and structural dynamics were coupled for
axisymmetric parachutes with a C-GRID. In coupled runs without the
C-GRID, coupling between the structural and fluid codes was
straightforward because the identical set of canopy surface nodes
was used in both codes. With the C-GRID, coupling is not as
straightforward because the structural and fluid codes use very
different sets of nodes to define the canopy surface. A mesh
update strategy and appropriate boundary conditions are needed in
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order for the C-GRID surface boundary to be compatible with the
structural representation of the canopy shape at each timestep.

The C-GRID for the initial canopy shape contains some
information that is used throughout a coupled computation. 'rhe
meridional distribution of nodes along the canopy surface and the
canopy thickness distribution remain constant throughout the
computation. Also, the clustering coefficients for the elliptic
grid remain unchanged throughout the computation. For some
computations it was necessary to keep the distribution of grid
points below the canopy and on the symmetry axis constant
throughout the computation. This was necessary to reduce the
distortion of cells within the volume enclosed by the canopy
surface.

The coupling process consists of three main steps which occur
each timestep during the coupled solution. First, the C-Crid
canopy surface is redefined each timestep in order to correspond to
the current structural shape. Each timestep, the structural code
returns updated positions and velocities for canopy nodes to the
CFD code. These position are used to update the canopy surface in
the C-Grid. Using the specified meridional distribution of points,
the new surface points are determined by interpolation from the
structural surface nodes using Lagrange polynomials. CFD surface
points are interpolated from a fourth order Lagrange polynomial
which is defined using the surrounding four structural surface
nodes. CFD surface points near the axis of symmetry (between the
first to structural surface nodes) are interpolated using a fifth
order Lagrange polynomial defined using the first three structural
surface nodes and assuming a "mirror" surface at the symmetry axis.
The surface is then given a thickness normal to the interpolated
positions as defined by the thickness distribution. (in some
computations, the canopy is given a constant thickness. At the
skirt, the surface is defined by a half-circle.)

Secondly, each timestep the elliptic grid is updated based on
the updated canopy surface representation. The elliptic grid is
defined by repositioning the surface boundary, repositioning the
outer boundary, and then updating interior points and points along
the symmetry axis. The outer boundary moves each timestep with the
parachute payload. This keeps the canopy surface near the center
of the grid throughout the computation. interior grid points are
updated with Poisson's equation and the same set of clustering
coefficients that were used to generate the initial C-Grid. The C-
Grid for the previous timestep is used as the initial "guess" for
the updated C-Grid generation. Since the motion of the canopy
surface is very small over a given timestep, the updated C-Grid
converges after only a few iterations.

Finally, each timestep appropriate boundary conditions are
defined. Boundary conditions on the canopy surface are defined to
represent a noslip nonporous surface. Since the CFD canopy surface
has a nonzero thickness, the surface velocities in the CFD
representation are not the same as the surface velocities for the
structural representation (which has no thickness). For this
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reason, the velocity boundary condition for each surface point is
simply taken as the displacement of that point over the previous
timestep divided by the magnitude of the timestep. The outer
boundary is assumed to be the far field and velocity components are
defined as zero (u=v=O) at the outer boundaries. The symmetry axis
is given a freeslip boundary by setting the normal component of
velocity (u) to zero on the symmetry axis.

After the grid is updated and boundary conditions are
specified as described above, the CFD solution is advanced one
timestep. The resulting pressure distribution is then sent to the
structural code as input. Again, this process is not as straight
forward as for the initial gridding (see figure 4) approach since
the CFD and structural codes use different sets of points to
represent the canopy surface. This process consists of two main
steps. First, the differential pressure distribution for C-Grid
canopy surface is determined. Since SALE computes pressures at
cell centers, nodal pressure values along the canopy surface are
defined as the average of the pressures in the two surrounding
cells. Pressures on the axis of symmetry nodes are defined as the
pressure in the adjacent corner cell. Lower and upper surface
pressures are subtracted to get the differential pressure
distribution for the meridional distribution of surface points.

Secondly, the CFD pressure distribution is interpolated to the
structural surface distribution. The pressure distribution is
transferred from the CFD code to the structural code by the same
approach that was used to transfer surface positions from the
structural code to the CFD code. Using the distribution of nodes
in the structural representation, the pressures are determined by
interpolation from the CFD distribution of points using Lagrange
polynomials.

Finally, the structural model uses the CFD pressure
distribution to advance the structural solution one timestep and
updated positions and velocities are once again returned to the CFD
code. The C-Grid is then updated, boundary conditions are defined,
and the process continues.

MATLAB & AVS: Preprocessing & Postprocessing

CFD Preprocessinq and postprocessing

The software packages MATLAB and AVS have been used as tools
for visualizing CFD grids and flow fields. MATLAB and AVS are used
in the generation of initial CFD grids for the coupled
computations. MATLAB is used to determine the surface boundary
points for the C-GRID and then to generate the initial algebraic
grid. A FORTRAN program is used to generate the elliptic grid
using the algebraic grid as an initial guess. Following the
generation of the elliptic grid; AVS is used to visualize the grid
in detail to determine if the grid is adequate for use in the
computation. If the grid is not adequate, the surface boundary can
be modified with MATLAB or attributes of the elliptic grid can be
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modified with the FORTRAN program and then viewed again with AVS.

In order to view CFD flow fields, flow information is saved
periodically throughout a computation for postprocessing. MATLAB
and AVS serve as postprocessing tools. Several MATLAB scripts were
written for quickly displaying CFD grids, velocity vectors, and
pressure contour lines. AVS is used to look at CFD data in more
detail and in color. With AVS, data can be viewed interactively
and thus in a much more meaningful fashion than with MATLAB. AVS
also has the ability to animate the computational results in order
to view time-dependent flow field information.

MSD postprocessing

The MSD FORTRAN subroutines used to solve the equations of
motion for the parachute system can generate a large quantity of
numerical data. The number of dumps required and the time interval
for these dumps are user defined input prior to the program
execution. The data generated from a run must be analyzed in a
logical and efficient manner. The MATLAB and AVS software have
been used for postprocessing results from the MSD code. The AVS
software is also used for viewing the axisymmetric deformations
projected into 3-D space. The user must be able to extract
information of interest including deformed shape, payload force,
strains, and stresses all as a function of time. This requires the
ability to graphically animate the motion and other information of
the parachute system as a function of time.

MATLAB is capable of plotting a curve onto a fixed coordinate
system. The data plotted can be read from any portion of a
preloaded matrix. The curve can be "erased" by replotting it with
the "invisible" option in MATLAB. Therefore, to create animation
a curve is plotted then erased for one time step, then plotted and
erased for the next time step, etc. The inclusion of a "pause"
statement before the erasing of each curve allows the user to stop
the animation at any time step. The MATLAB software is run on a
Kubota mini supercomputer Titan 3000. The animation showing the
results from a dynamic program run appears as uninterrupted motion
to the human eye for runs with less than 30 nodes. A list of the
output saved by the program in MATLAB matrix format and the
capability of viewing various results with the MATLAB program are
discussed below. The MATLAB programs are a modified version of
programs written for a spherical membrane program that is discussed
in (15]. This reference also includes the MATLAB source code for
the spherical membrane model. A brief outline of the plotting
sequence from the MATLAB program is given below.

MSD MATLAB program description

MATLAB first displays a listing of various input parameters of
the run. Next, a list of available options appear which includes
the key options given below.
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1. The overall global shape of the canopy (as a two-dimensional
meridional line figure) is animated in time in the global
coordinate system. The canopy resolution may be small in this
plot, depending on the distance the parachute system dropped during
a run.
2. Same as I except viewed from a fixed payload perspective.
3. x or y position, velocity, acceleration, and pressure difference
at any node versus time.
4. The pressure distribution across the canopy surface versus the
canopy meridional length can be animated in time.
5. The hoop and meridional strains and stresses versus meridional
canopy or line length can be animated in time.
6. The gore bulge angle versus meridional length can be animated in
time.
7. Payload position and velocity or center of mass position and
velocity versus time can be viewed.
8. Payload force versus time can be viewed.

A variety of other options are available. The program sets
appropriate axes based on minimum and maximum values that are
tracked during execution of the MSD coupled code or determined from
the matrices with MATLAB.

AVS programs for MSD postprocessino

The AVS networks were written to generate a three-dimensional
view of the parachute system. The data files for these programs
are created by separate FORTRAN programs that read in the MATLAB
data files and create the required AVS data files. One program
utilizes the number of gores to generate that number of "rotated"
data points of the canopy radials and lines. The user must define
how many time steps are desired and the program generates the
three-dimensional view based on radial positions and lines. The
AVS software used for the simulation allows the user to view the
opening in any orientation from a payload fixed reference point.
A second FORTRAN program was written to extract the "steady state"
three-dimensional shape in an AVS readable format. This program
utilizes the CALA logic to determine three-dimensional data points
on the canopy radials and across the horizontal sections of the
gore based on the CALA logic. The result is a true three-
dimensional view of the computed axisymmetric parachute system.
The number of points to be calculated across the horizontals is a
user defined parameter. The three-dimensional view can be rotated
into any orientation within the graphics window. These views are
used to compare computed terminal "steady state" shapes with real
parachute shapes that are digitized either from video of still
camera shots. The two images can be superimposed on top of each
other to globally compare the computed and real shapes. This
second technique will be expanded to allow for animation of the
three-dimensional projection which will allow a side by side
comparison of true airdrops to computed results.
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Results

The coupled computer model is being tested by modeling a
variety of axisymmetric canopies. These canopies are either used
by the U.S. Army for personnel/cargo or are scaled versions of
common parachutes being used in experiments. Results from six
simulations will be presented. Results from the first three
simulations will be the basic information of the opening process.
The fourth and fifth simulations were run to compare results to
steady state permanently skirt reefed canopies. The last
simulation will be presented in more detail. The six runs are
summarized below.

1. A half scale C-9 dropped from rest modeling an experiment (16].
2. A quarter scale C-9 dropped from rest with the skirt reefed for
one second and then allowed to disreef.
3. An infinite mass opening which is modeling an experiment [17].
The canopy is a small scaled flat circular that is opened in a wind
tunnel. The speed of the air in the wind tunnel is maintained at
70 ft/sec.
4. A standard T-10 canopy (10 percent flat extended skirt D0 of 35
feet) is permanently skirt reefed. Terminal shapes of the canopy
from the numerical simulation are compared to experiments [18].
5. A G-12 canopy (flat solid circular D, of 64 feet) with a 3000
pound payload is permanently skirt reefed. Terminal shapes of the
canopy and velocities from the numerical simulation are compared to
experiments [19].
6. A half scale C-9 dropped from rest with all X reefing for 1.615
seconds. This run is modeling an experiment [16] in which the
parachute free falls in a sleeve attached to a ceiling for 30 ft.
The payload and lines are stored at the opening of the sleeve so
the payload actually drops closer to 42 ft before the canopy begins
to slide free from the sleeve.

Table 1 summarizes the input data used for each of the six cases.

TABLE 1. Summary of Input Parameters

PARAMETER DESCRIPTION CASE CASE CASE CASE CASE CASE
1 2 3 4 5 6

NX # of CFD Cells in the 70 59 29 70 70 70
X Direction II

NY # of CFD Cells in the 60 104 49 60 60 60
Y Direction

n # of Nodes on the 24 29 11 25 25 24
Canopy I I III ___
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nl # of Nodes on the 15 0 10 15 15 15
Line

Payload Weight (pounds) 42.5 5.3 Inf. 255 3000 51
Mass II

Constructed Diameter 14 7 4.46 35 64 14
(feet)

Constructed Line Length 12 5.74 3.66 29.4 51.2 14.2
(feet) I I I I I

Number of Gores 28 28 28 30 64 28

All of the cases except case 4 are modeling solid-cloth flat
circular canopies with no porosity and no vent. All six cases were
run with the same material properties listed below except where
noted. The values used are very crude approximations of the
experimental models because the goal of the model is to predict
global results. The goal is to predict first order phenomena
associated with parachute openings. The Young's modulus for the
fabric and lines is taken as 4320000 (psf). The fabric thickness
is 0.0004 (feet) and the line radius is 0.00593 (feet). The
density of the canopy material is 0.593 (slugs/ft 3 ) (1.2 slugs/ft 3

for case 5) and the density of the line material is 0.6 (slugs/ft3 )
(1.2 slugs/ft 3 for case 5). The gravitational constant is 32.2
(feet/second2 ) (case 3 does not include gravitational effects
because the infinite mass tests were performed in a wind tunnel
with the canopy opening horizontally to the ground). The fluid
medium is air with standard atmospheric properties at sea level.

The initial shape of the canopies is unstretched. The initial
shapes are determined by defining the angle between the y axis and
the suspension lines. The canopy skirt is required to remain
tangent to the suspension lines to create the initial
configuration. The top of the canopy is required to trace out a
circular section so that the required total line length and canopy
constructed diameter are consistent the desired values. The
initial payload position is defined ae the origin of the y axis of
symmetry.

The payload force in the payload force versus time curves for
each case are calculated by taking the force in the suspension line
spring that connects the last line node to the payload node and
multiplying its vertical component by the total number of gores.
The canopy skirt node is used for runs with know line nodes.

The six cases presented in this section were run on either a
Kubota Titan 3000 mini supercomputer or on an Army Cray XMP
Supercomputer. The maximum allowable time step varied for each run
from 4x10"l to 5x10"5 seconds. These time steps were required to
maintain stability in the solution. The time steps are very small
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and a simple calculation shows that a 5 second run, with even the
ILrger time step, requires over 100,000 iterations. The coupled
codes have not been optimized for performance. The goal has been
to debug and get a feel for the effects of various parameters in
the codes. Optimization and programming for specific high speed
machine capabilities will be addressed for the next generation
coupled codes.

The six cases will be described in more detail below. The
figures associated with each case number are located in separate
appendices.

Case 1

Case 1 is a half-scale C-9 solid-cloth canopy, which is
dropped from rest. This run is attempting to simulate ongoing
experiments by Dr. Calvin Lee of Natick (16]. The parachute system
is hanging from a ceiling with a release mechanism attached to the
apex. The canopy hangs from the apex, the lines hang from the
skirt and the payload is hanging from the bottom of the lines. The
apex connection is released at time equal to zero seconds.

In the numerical simulation, the initial location of the
payload node is at the origin. This simulation was repeated two
times with different normal damping parameters. The simulation
which resulted in the closest prediction of peak opening force will
be shown in more detail. The other simulation and the effects of
the normal damping parameter will also be discussed. Figure Al
shows a sequence of canopy shapes for equally spaced time steps
from the initial shape at time equal to zero seconds up to time
equal to 1.0 seconds. The figures for shapes at different times
are presented from a fixed payload reference. Figures A2 and A3
are a continuation of figure Al for times from 1.0 to 2.0 seconds
and 2.0 to 3.0 seconds, respectively. The shape versus time curves
show some of the first order characteristics that are typical with
this type of parachute opening. These characteristics include the
initial "ball" of air filling the apex of the canopy and then
inflating the canopy from apex to skirt (see figures Al and A2).
The model also predicts a phenomena called wake recontact that
occurs after the maximum payload force has been reached. Wake
recontact occurs in relatively low payload mass to canopy surface
area finite mass openings during or soon after the payload has
undergone maximum deceleration. The wake trailing the opening
canopy is moving close to the speed of the payload, so when the
payload undergoes its maximum deceleration (often when the canopy
is approaching the inflated diameter) the parachute system's
vertical speed slows down and the trailing wake contacts the apex
of the canopy. The recontacting wake can indent the apex of the
canopy. This can be seen in figures A2 and A3.

The predicted payload force, velocity and position curves as
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functions of time are plotted together in figure A4. Figure A5
plots the payload force versus time curve for the numerical
simulation and two sets of payload force versus time curves from
the experiments [16]. Even with the assumed initial shape and
other approximations used in the model, the force versus time
curves do show similarities. The peak force prediction from the
model is strongly dependent on the normal damping parameter. For
low values of normal damping the model predicts considerably higher
peak loads then the experiments. The discrepancy in the peak force
value is most likely the result of contributions from many factors.
These factors include the axisymmetric assumption, no-porosity in
the model, relatively crude structural model and the constants used
for the material properties. The numerical model does predict the
time at which the peak opening force will occur. The model also
appears to predict the second peak in the payload force versus time
curve which corresponds to a time after the wake recontact
phenomena has occurred. The influence of the normal damping
parameter on this simulation will be presented next.

As the normal damping constant decreases, the predicted peak
opening force increases. Very large normal damping constants also
effect the amount of time required for opening. The simulation was
run with two different normal damping constants. Figure A6 plots
the force versus time curves for the two simulations. Figure A6
shows the difference in the peak force values and the difference in
the amount of fluctuations in the payload force. Figure A7 plots
the payload velocities versus time curves. The velocity versus
time curves also show the effects of the normal damping parameter
on the solution. Figure A8 shows the payload position versus time
curves for each simulation. The effect of the normal damping
parameter on position is not significant as expected. The ability
to predict the peak opening force without a normal damping
contribution in the model is a goal for the next generation of the
coupled codes.

Case 2

A quarter scale C-9 is dropped from rest with the skirt reefed
for one second and then allowed to disreef. This simulation was
not based on an experiment. The run was made on an older version
of the code for comparison with the results presented in [5] for
which there was know reefing. The skirt reefing is accomplished by
restricting global X displacements of the canopies skirt node for
one second. At one second the restriction imposed on the skirt
node is removed.

In the numerical simulation, the initial location of the
payload node is at the origin. Figure Bl shows a sequence of
canopy shapes for equally spaced time steps from the initial shape
at time equal to zero seconds up to time equal to 1.0 seconds. The
figures for shapes at different times are presented from a fixed
payload reference. Figures B2 and B3 are a continuation of figure
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Bi for times from 1.0 to 1.3 seconds and 1.3 to 2.3 seconds,
respectively. The time interval from 1.0 to 1.3 shows the
disreefing progression. The final shape and flow field is
approaching the results reported in [5].

The predicted payload force, velocity and position curves as
functions of time are plotted together in figure B4. The peak
force predicted is greater than that predicted in [5] because the
parachute system in this case reaches a greater velocity before
disreefing.

Case 3

This case is modeling a solid flat circular canopy under
infinite mass opening conditions and was compared to experimental
results presented in [17]. The canopy is a scaled C-9 flat
circular that is opened in a wind tunnel with a maintained air
speed of 70 ft/s. The numerical model simulates the infinite mass
condition by prescribing a payload velocity versus time curve where
the payload velocity approaches a terminal velocity.

In the numerical simulation, the initial location of the
payload node is at the origin. Figure Cl shows a sequence of
canopy shapes for equally spaced time steps from the initial shape
just before disreefing at time equal to 3.0 seconds up to time
equal to 3.1 seconds. Note that the initial shape shown in Cl is
actually stretched in the global Y direction from the shape at time
equal to zero (refer to the infinite mass subsection of this report
for more details on infinite mass openings). The figures for
shapes at different times are presented from a fixed payload
reference. Figures C2 and C3 are a continuation of figure Cl for
times from 3.1 to 3.2 seconds and 3.2 to 3.3 seconds, respectively.
The shape versus time curves show some of the first order
characteristics that are typical with infinite mass openings. The
model does not predict the wake recontact phenomena. This is
expected because the payload never decelerates in an infinite mass
opening.

The predicted payload force and velocity curves as functions
of time are plotted together in figure C4. The payload velocity
curve was predefined. The curve shows the payload velocity
starting at zero. The payload is smoothly accelerated and
decelerated until the terminal (desired wind tunnel speed) is
reached. In figure C4, the payload approaches 70 ft/sec at 1.7
seconds. The flow field is permitted to develop for another 1.3
seconds. At 3 seconds the reefing restriction on all of the canopy
nodes is removed. Figure C5 plots the maximum diameter over the
constructed diameter versus time. This curve was compared to the
experimental curves on pages 16,17 and 18 of [17]. The numerical
predictions occur slightly sooner in time and the over inflation
(peak diameter reached before steady state) is lower in magnitude
than the experimental results shown in [17]. The difference in the
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time of overinflation is most likely due to the initial conditions
imposed in the infinite mass opening. The numerical model has a
positive volume inside the canopy and a significantly larger
initial diameter. The flow field is permitted to approach steady
state conditions and a significant pressure builds up inside the
canopy before disreefing. The canopy in the experiment is opened
from a more streamlined tube like shape. The discrepancy in the
value of the over inflation may be because the numerical model is
actually plotting maximum diameters of the radials position while
the experiments are reporting maximum diameters based on the
inflated gore shapes detected from video images of the experiments.

Case 4

A standard T-10 canopy (10 percent flat extended skirt D, of
35 feet) is permanently skirt-reefed. Terminal shapes of the
canopy from the numerical simulation are compared to experiments
[18]. In this case the skirt reefing is accomplished by
restricting global X displacements of the canopies skirt node after
the desired skirt diameter is reached during the inflation. The
initial skirt diameter was smaller than the desired reefed skirt
diameter. This case and case 5 are presented to show other
potential applications of future and more accurate coupled codes.

In the numerical simulation, the initial location of the
payload node is at the origin. Figure D1 shows a sequence of
canopy shapes for equally spaced time steps from the initial shape
at time equal to zero seconds up to the final time equal to 5.0
seconds. The figure of shapes at different times is presented from
a fixed payload reference. The figure shows the skirt initially
moving inward towards the axis of symmetry, but then inflating and
being restricted to the final prescribed skirt diameter.

The predicted payload force, velocity and position curves as
functions of time are plotted together in figure D2. These are
presented for clarity. The simulation was run to determine a
steady state reefed shape and to estimate the terminal velocity of
the parachute system. The steady state shape for the reefed T-10
canopy with a 255-pound payload is shown side by side with a
picture of the actual drop in figure D3. The numerically predicted
shape is on the left and the experimental image is on the right of
figure D3. The drops were videotaped on standard VHS tapes [18].
The authors viewed the tapes and scanned in individual frames that
appeared to be the most "axisymmetric." The reefed T-10 never
reaches a truly steady state (nor do any real canopies) but the
frame presented in figure D3 was viewed as typical of the drops.
The frame was digitized and has been dithered and grayscaled for
this report. The numerical image was created with the AVS software
as described in a previous section of this report. The image was
scaled and manipulated into approximately the same orientation as
the experimental image to allow for a global shape comparison. It
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should be noted that the experimental canopy has a vent at the
apex. The experimental image shows an inward gore shape near the
skirt which corresponds to a net inward pressure near the skirt.
The net pressure for the numerical model is outward from apex to
skirt.

The use of the code to predict terminal shapes and terminal
velocities is relatively inefficient. However a sequence of runs
could be made with different skirt reefing diameters and different
payload velocities. The authors are attempting to couple a static
structural code to a CFD code producing steady state results about
fixed shapes. The codes would be utilized with an iterative
process to converge on the steady state shape and flow field for a
given Reynolds number. The payload weight would be part of the
output.

Case 5

A G-12 canopy (flat solid circular Do of 64 feet) with a 3000
pound payload is permanently skirt reefed. Terminal shapes of the
canopy and terminal velocities from the numerical simulation are
compared to experiments [19]. This case is similar to case 4
except the initial grids were created about the reefed skirt
diameter. Therefore the skirt canopy node is restricted from any
global X displacements for all time. This problem is presented
because the canopy and payload are significantly larger than the
other simulations presented. The reefed G-12 canopy was recently
devised and approved as an alternate parachute for Operation
Provide Promise. Operation Provide Promise includes dropping of
relief supplies into Bosnia-Herzegovina.

In the numerical simulation, the initial location of the
payload node is at the origin. Figure El shows a sequence of
canopy shapes for equally spaced time steps from the initial shape
at time equal to zero seconds up to the final time equal to 10.0
seconds. The figure of shapes at different times is presented from
a fixed payload reference.

The predicted payload force, velocity and position curves as
functions of time are plotted together in figure E2. These are
presented for clarity. The simulation was run to determine a
steady state reefed shape and to estimate the terminal velocity of
the parachute system. The steady state shape for the reefed G-12
canopy with a 3000-pound payload is shown side by side with a
picture of the actual drop in figure E3. The numerically predicted
shape is on the left and the experimental image is on the right of
figure E3. The image manipulation to produce figure E3 was
described in case 4. The numerically predicted terminal velocity
is approaching 70 ft/sec in figure E2. The experimental drops were
analyzed and a terminal decent rate of 75.2 ft/sec was determined
as an average for drops conducted from 15,000 ft. The terminal
velocity results appear to be very close considering the
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approximations used in the model. Other terminal descent rates and
shapes will need to be compared for future models. Any numerical
model that is predicting the opening behavior of a canopy should at
the very least be capable of predicting the steady state
characteristics of that parachute system.

Case 6

Case 6 is a half-scale C-9 dropped from rest with all X
reefing for 1.615 seconds. This run is moueling an experiment [16]
in which the parachute free-falls in a sleeve attached to a ceiling
for 30 ft. The lines are stored at the opening of the sleeve so
the payload actually drops closer to 42 ft before the canopy slides
free from the sleeve. The sleeve is conical in construction. The
canopy is not folded along the radials in the sleeve.

Figure Fl shows a sequence of canopy shapes for equally spaced
time steps from close to the initial shape at time equal to 1.6
seconds just before disreefing up to time equal to 2.0 seconds.
Figures F2, F3 and F4 are continuations of figure Fl for times from
2.0 to 2.5 seconds, 2.5 to 3.5 seconds and 3.5 to 5.0 seconds,
respectively.

The predicted payload force, velocity and position curves as
functions of time are plotted together in figure F5. The force is
calculated by taking the force in the suspension line spring that
connects the last line node to the payload node and multiplying its
vertical component by the total number of gores. Figure F6 plots
the payload force versus time curve for the numerical simulation
and the payload force versus time curve from the experiment [16].
The two curves in figure F6 show similarities, but appear to be
offset by approximately 0.4 seconds. The major reason for this
offset is due to the required initial shape in the numerical model.
As discussed previously in this report, the codes are currently
limited to initial conditions that have a positive volume inside
the canopy. This positive volume and the initial predefined skirt
diameter change very little for the first 1.615 seconds of all X
reefing. Therefore, during the first 42 feet of freefall the
pressure builds up on the inside of the canopy. At disreefing, a
substantial pressure has built up on the inside of the canopy which
aids in the inflation process. This pressure build up initiates
the inflation faster than the experiment.

Figure F7 plots the payload velocity versus time curve for the
numerical simulation and the velocity versus time curve from the
experiment [16]. The velocities from the experiments were obtained
from an image analysis of the parachute system [16]. The curves
have the same offset described above. Figure F8 plots the skirt
and maximum diameter versus time curves for the numerical
simulation and the skirt and maximum diameters from the exrsriment
[16]. The experimental diameters were extracted from video that
was shot from the payload looking "up" the lines at the canopy.
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The same time offset is present.

A sequence of pressure and velocity fields for the volume
surrounding the canopy are shown in figures F9 through F16. These
plots are snapshots in time of the flow field surrounding the
canopy. The snapshots are zoomed-in pictures of the flow field
around the canopy and do not show the entire computational region.
The pressure contour lines are shown on the left hand side of the
figure. A description of the contour lines values accompanies each
figure. The pressure range between contour lines' in these figures
is 0.25 psf. The ambient pressure is shown on the figures as a
bold contour line. The right hand side of these figures show the
velocity vectors. The velocity vectors are scaled equally for each
snapshot to provide information on the time-dependent velocity
field in a consistent manner.

Figures F17 through F20 are a sequence of the computational
CFD grids corresponding in time to each of figures F9 through F16.
Each of figures F17 through F20 has two grids at different times.
The grids progress in time from left to right. The difficulty of
creating a structured grid which can follow and remesh around all
of the potential canopy shapes is evident from this sequence of
grid snapshots. CFD codes that utilize unstructured grids are
being investigated for next generation CFD codes to help eliminate
this difficulty. Unstructured grids will also provide more
flexibility on the initial shapes of the canopy.

Discussion

Computational Fluid Dynamics

The CFD model has been able to represent canopy geometries
undergoing large deformations during the opening process. Although
many modifications have been made to adapt codes to study the
opening process, the current model still Las several limitations to
be addressed in the future. Inclusion of fabric porosity into the
model should reduce the predicted opening shock and improve the
correlation between predicted and experimentally measured
behaviors. It is also believed that incorporation of a turbulence
model will improve the correlation of predicted behavior with
experimental data. One of the primary limitations of the current
model is its inability to represent canopy geometries early in the
inflation phase due to gridding restrictions. Future models will
need to upgrade the current gridding approach. Utilization of
unstructured grid CFD codes with periodic remeshing may be the best
approach.

Mass Spring Damper Model

The MSD model has many assumptions and is not expected to
model axisymmetric canopies completely. However, the model is
capable of modeling large deformations that are similar to those
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experienced by parachutes. At this time we believe the MSD model
has reached its potential for predicting parachute openings. The
experience, techniques learned, and some sections of the codes will
be very useful for potential next-generation models. A higher-
order model should more accurately predict structural behavior for
parachute systems. Presently, four separate source codes are being
considered and evaluated. Each of these codes includes a three-
dimensional capability and all are based on the finite element
method.

Coupling

The current model could continue to undergo improvement. The
explicit marching method should approach the exact solution to the
coupled equations for a sufficiently small time step. However, an
implicit method, which would require iterating between the
structural and CFD codes, may be advantageous in the future. A
variety of next generation codes are being reviewed for their
potential use in future generation coupled code- o The ability to
efficiently predict terminal "steady state" information for any
type of axisymmetric parachute system is also being investigated.
The codes could allow a user to make a variety of small
modifications to a design and compare the steady-state results such
as terminal drag, velocity and shape in an acceptable quantity of
time. This would provide the user accurate terminal decent
information for drops in which the opening is not of primary
concern and thus eliminate the need for running a more costly
dynamic code.

Conclusions

The complexity of modeling the opening process stems from the
coupling between the structural dynamics of the canopy, lines plus
payload and the aerodynamics of the surrounding fluid medium. This
paper has described ongoing research at Natick which involves the
coupling of a CFD code and a structural dynamics code. The
solution to the coupled problem is expected to assist in the
development of future U.S. Army airdrop systems, which include the
capability of deploying at low altitudes and high speeds. Initial
computational results with the model described in this paper
compare favorably with experimental data. However, the current
model requires significant improvements and enhancements before it
can be considered usable as a design aid. However, estimates of
some design parameters can be made with the present model. Future
computational models are expected to provide significant insight
about the behavior of parachutes during the opening process.
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Figure F17. CFD Grid (t=1.58 & 1.84 seconds)

Figure F18. CFD Grid (t= 2.11 & 2.37 seconds)
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Figure F19. CFD Grid (t=2.63 & 2.89 seconds)

Figure F20. CFD Grid (t=3.16 & 3.42 seconds)
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